

Published on Web 01/30/2003

Torsional Barriers for Planar versus Twisted Singlet Styrenes

Frederick D. Lewis* and Xiaobing Zuo

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received November 21, 2002; E-mail: lewis@chem.northwestern.edu

The magnitude of the C=C torsional barrier for the lowest singlet state (S_1) of styrene (1) has been the subject of speculation for over three decades but has not been directly measured.^{1,2} Both gasphase spectroscopy³ and theory^{2,4} agree that styrene S_1 is benzenelocalized and has a large barrier for torsion about the double bond. Nearly a decade ago we reported an S1 barrier of 8.8 kcal/mol for trans-1-phenylpropene (2), substantially smaller than several calculated values for styrene.5-7 Our experimental values were determined from the temperature-dependent isomerization rate constant, which was calculated from the measured isomerization quantum yields and singlet decay times obtained over a wide range of temperatures. This method cannot be employed for styrenes that do not possess geometric isomers. However, if C=C torsion is the only activated singlet-state decay process, the barrier can be obtained simply from nonlinear fitting of the singlet decay time using eq 1

$$\tau(\mathbf{T}) = 1/[\sum k + A \exp(E_a/\mathbf{RT})]$$
(1)

where $\sum k$ is the sum of all nonactivated processes (fluorescence and intersystem crossing), and *A* and *E*_a are the preexponential and activation energy for the activated process.⁸ We report the application of this methodology to styrenes **1**–**6** (Chart 1). The C=C torsional barrier depends on the phenyl-vinyl dihedral angle, ϕ , decreasing from ca. 7 kcal/mol for planar styrenes to 4–5 kcal/ mol for partially twisted styrenes. Highly twisted styrenes decay via exceptionally rapid intersystem crossing.

Chart 1

Styrenes 2 and 3 undergo trans, cis isomerization upon irradiation in dilute solution, whereas styrenes 1 and 4-6 show no apparent photochemical reaction. Temperature-dependent lifetime data for 1, 4, and 5 are shown in Figure 1 along with fits to eq 1. The resulting activation parameters for these and the other styrenes in Chart 1 are reported in Table 1 along with the fluorescence quantum yields at room temperature, the fluorescence decay times at room temperature and 80 K, and the calculated rate constants for singletstate torsion, k_t , and intersystem crossing, k_{isc} , at room temperature. The values of E_a obtained from fitting the published lifetime data for 2 and 3 are in good agreement with the values previously determined from Arrhenius plots of the isomerization rate constants.^{5,6} The barrier obtained for styrene is very similar to that previously reported for 2 and larger than the barrier reported for 3. The barrier for the α -methylstyrene 4 is slightly lower than that for 3. Styrenes 1–4 have values of log $A \approx 12$, consistent with a unimolecular isomerization processes. Fitting of the temperature-

Figure 1. Temperature-dependent lifetimes for styrenes 1, 4, and 5 in methylcyclohexane and nonlinear fits to eq 1.

Table 1. Excited Singlet-State Properties of the Styrenes

	-					
styrene ^a	1	2	3	4	5	6
$\log A^b$	12.2	12.2	12.6	11.6	10.3	9.6
$E_{\rm a}$, kcal/mol ^b	6.6	7.2	5.4	4.2	1.6	1.4
$10^{-7} k_{\rm t}$, s ^{-1 b}	1.8	0.89	4.1	35		
$10^{-7} k_{\rm isc}$, s ⁻¹ ^c	4.0	4.6	4.6	5.2	150	86
$\Phi_{\mathrm{f}}{}^d$	0.24	0.19	0.03	0.008		
$\tau_{\rm s}$, ns, RT ^e	13.5	11.3	2.6	1.5		
$\tau_{\rm s}$, ns, 80 K ^e	18.6			15.8	12.4	18.1
ϕ , deg ^f	0	0	35	37	80	85

^{*a*} See Chart 1 for styrene structures. Data for **1** and **4–6** are in methylcyclohexane, and those for **2** and **3** are in hexane. ^{*b*} Activation parameters and k_t obtained from nonlinear fitting of the lifetime data using eq 1. ^{*c*} Calculated from the total unactivated decay rate minus the fluorescence rate. ^{*d*} Fluorescence quantum yield at room temperature (**5** and **6** are not fluorescent at room temperature). ^{*e*} Fluorescence decay times at room temperature and 80 K. ^{*f*} Estimated phenyl–vinyl dihedral angles, $\pm 10^{\circ}$.

dependent lifetimes of styrenes **5** and **6** provides much smaller values of $E_a \approx 1.5$ kcal/mol and log $A \approx 10$. Because the solvent viscosity increases rapidly in the region where the lifetimes of these styrenes increase (Figure 1), the intrinsic barrier may be smaller than the observed barrier.⁹ Thus, both E_a and log A are exceptionally small for an activated isomerization process.

The ground-state geometry and the electronic spectra of the styrenes depend on the location of methyl substituents.¹⁰ The ground-state phenyl-vinyl dihedral angles ϕ reported in Table 1 are based on a composite of calculated and literature values.¹¹ They are inversely correlated with the C=C torsional barriers, planar styrenes having the largest barriers. The absorption spectra of the planar styrenes 1 and 2 have weak, structured long-wavelength absorption bands with maxima at ~296 nm and strong structureless bands at ~246 nm.¹¹ In comparison, the long-wavelength bands of the moderately nonplanar styrenes 3 and 4 are weaker and structureless, and the short-wavelength band is blue-shifted. The highly nonplanar styrene 6 has a well-resolved long-wavelength

Figure 2. ZINDO frontier orbitals and the character of the S_1 and S_2 or S_3 singlet states for styrenes 1 (a) and 6 (b).

Figure 3. Approximate state energy diagrams for styrenes 1 (a) and 6 (b). Singlet energies are from ZINDO calculations; triplet energies are from the literature.12,13

band and a strongly blue-shifted, short-wavelength band. The ZINDO derived frontier orbitals for 1 and 6 are shown in Figure 2. Most of the frontier orbitals of 1 are delocalized, as are those of $\mathbf{3}$ (not shown), whereas the frontier orbitals of $\mathbf{6}$ are localized on benzene or ethylene.

The activation parameters for styrenes 1 and 4 are consistent with those of the model proposed previously for 2 and 3 (Figure 3a).⁶ In the case of **1** and **2**, the C=C torsional barriers leading to the perpendicular singlet state ¹P* are relatively large. These planar styrenes decay predominantly via fluorescence and intersystem crossing at room temperature. Styrenes 3 and 4 have smaller barriers (and smaller fluorescence rate constants) and decay via both C=C torsion and intersystem crossing at room temperature. The S₀ and S_1 singlet states of 1 and 2 are planar,¹⁴ whereas S_0 is nonplanar for 3 and 4 but S_1 is planar for 3^{15} and, presumably, for 4. Increased nonbonded repulsion in the planar S_1 state of 3 or 4 can account for their decreased torsional barriers.

The values of log A and E_a for **5** and **6** are distinctly smaller than those for 1-4, suggesting a change in the mechanism for activated excited singlet-state decay. The breaking of conjugation resulting from the large ground-state phenyl-vinyl dihedral angles is clearly evident in the frontier orbitals of 6 (Figure 2b). The ethylene-localized twisted ¹P* state of 6 should lie well above the benzene-localized singlet states, rendering singlet torsion unlikely. However, the geometry of 6 provides the orthogonal relationship of the benzene and vinyl p-orbitals needed for effective spin-orbit coupling between the benzene-localized S1 state and the ethylenelocalized T₁ state.^{13,16} Thus, the rate constant calculated from the activation parameters for 5 and 6 is assigned to k_{isc} (Table 1). The values of k_{isc} for **5** and **6** are substantially faster than those for the planar styrenes 1–4, but slower than that of acetophenone ($k_{isc} =$ $4 \times 10^{10} \text{ s}^{-1}$). This difference can be attributed to the location of the orthogonal p-orbitals of 5 on adjacent atoms, rather than on the same atom, as in acetophenone. Out-of-plane vibrations can serve as promoting modes for ${}^{1}\pi,\pi^{*}$ to ${}^{3}\pi,\pi^{*}$ intersystem crossing.¹⁷ The activated nature of the singlet decay of **5** and **6** (Figure 1) may reflect the solvent viscosity dependence of these vibronic interactions.

In summary, kinetic modeling of the temperature-dependent lifetime data provides a barrier of 6.6 kcal/mol for excited singletstate C=C torsion in styrene, thus putting to rest decades of speculation about the magnitude of this barrier. The torsional barrier decreases slightly for styrenes with moderately large phenyl-vinyl dihedral angles. Styrenes with large phenyl-vinyl dihedral angles undergo exceptionally rapid intersystem crossing as their dominant decay pathway at room temperature. The unexpected dependence of decay pathway on ground-state geometry is attributed to a change in the character of the singlet states from delocalized for planar styrenes to localized for twisted styrenes. This model can also account for the ring-size dependence of the singlet lifetimes of 1-phenylcycloalkenes¹⁸ and benzocycloalkenes.¹⁹

Acknowledgment. Funding for this project was provided by NSF grant CHE-0100596.

Supporting Information Available: Ground-state dihedral angles and absorption and fluorescence emission spectra of 1-6 (Figure S1) (PDF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- (a) Hui, M. H.; Rice, S. A. J. Chem. Phys. 1974, 61, 833-842. (b) Crosby, (1)P. M.; Salisbury, K. J. Chem. Soc., Chem. Commun. 1975, 477–478.
 Bearpark, M. J.; Olivucci, M.; Wilsey, S.; Bernardi, F.; Robb, M. A. J.
- Am. Chem. Soc. 1995, 117, 6944–6953.
 (3) (a) Syage, J. A.; Adel, F. A.; Zewail, A. H. Chem. Phys. Lett. 1983, 103,
- (a) Syage, 5 H., Hor, H., Z., S., Zingher, E., Zuckermann, H.; Zilberg, S. J. Chem. Phys. **1995**, 103, 37–47.
- (a) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Phys. Chem. A 1997, 101, 8395–8401. (b) Molina, V.; Merchan, M.; Roos, B.
 O.; Malmqvist, P. Phys. Chem. Chem. Phys. 2000, 2, 2211–2217. (c)
 Amatatsu, Y. Chem. Phys. Lett. 2001, 344, 200–206. (d) Amatatsu, Y. J.
 Comput. Chem. 2002, 23, 950–956.
- (5) Lewis, F. D.; Bassani, D. M. J. Am. Chem. Soc. 1993, 115, 7523-7524.
- (6) Lewis, F. D.; Bassani, D. M.; Caldwell, R. A.; Unett, D. J. J. Am. Chem. Soc. 1994, 116, 10477-10485.
- (7) The value of Ea obtained from recalculation of the original data is smaller than that previously reported (8.8 kcal/mol).
- (8) For details concerning nonlinear fitting procedures, see: Lewis, F. D.; Zuo, X.; Kalgutkar, R. S.; Wagner-Brennan, J. M.; Miranda, M. A.; Font-Sanchis, E.; Perez-Prieto, J. J. Am. Chem. Soc. 2001, 123, 11883–11889.
 (9) Wegewijs, B.; Ng, A. K. F.; Verhoeven, J. W. Recl. Trav. Chim. Pays-Bas 1995, 114, 6–12.
- (10) Suzuki, H. Electronic Absorption Spectra and Geometry of Organic Molecules; Academic Press: New York, 1967.
- See Supporting Information. (11)
- (12) Ni, T.; Caldwell, R. A.; Melton, L. A. J. Am. Chem. Soc. 1989, 111, 457 - 464.
- (13) Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, CA, 1978.
- (14) (a) Grassian, V. H.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Phys. Chem. 1989, 93, 3470-3474. (b) Belau, L.; Haas, Y. Chem. Phys. Lett. **2001**, *33*, 297–303. Grassian, V. H.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Phys.
- (15) Orassian, V. H., Bernstein, D. R., Beeon, H. T., Beenman, P. H. F. Paper, Chem. 1990, 94, 6691–6695.
 (16) Klessinger, M.; Michl, J. Excited States and Photochemistry of Organic Molecules; VCH Publishers: New York, 1995.
 (17) Lim, E. C. In Excited States; Lim, E. C., Ed.; Academic Press: New York, 1977. VII 12, pp. 2052–205.
- York, 1977; Vol. 3, pp 305-337. Zimmerman, H. E.; Kamm, K. S.; Werthemann, D. P. J. Am. Chem. Soc.
- 1974, 96, 7821-7823 (19) Lyons, A. L.; Turro, N. J. J. Am. Chem. Soc. 1978, 100, 3177-3181.

JA029430A